ORIE 5355: Applied Data Science -Decision-making beyond Prediction Lecture 2: Common challenges in data collection
 Nikhil Garg

Announcements

- Homework 1 posted
- Fill out when2meet for office hours
- My office hours today, after class, outside café

Questions from last time?

Module overview

- What is data? Where does it come from? What does it represent?
- Common challenges in data collection Selection biases, censoring, and other challenges
- Polling/surveys as an extended example
- What goes wrong in measuring opinions (mean estimation)
- Some techniques that somewhat work
- US 2016 election polls as a case study
- Other challenges and contexts: online ratings, privacy, etc.

What is data?
A quick primer on measurement theory

What is a quantitative data point?
A measurement is "assignment of numbers to a variable in which we are interested."

- Construct/variable: what are we actually interested in?
- measurement/datum: numerical representation

These are not the same thing, especially with complexities of people!

Examples of constructs and (often flawed) measurements

Construct	Measurement
How well you understand the course material	A 1-100 grade, or a coarser letter grade
Your opinion about a movie	$1-5$ star rating, or a paragraph text review
Your political views/ideal public policy	Reduced to binary choice in voting
Race + Ethnicity	"white," "Black," "Asian" "Hispanic" "Other"
Gender	Often reduced to binary in surveys/forms

People disagree on how measurements map to constructs

- Ratings in online marketplaces across countries

In the US, anything but 5 stars means "terrible."
In other countries, 3 or 4 stars is the norm
Heterogeneity within a country/culture: some people rate everything a 5 and always tip, others never do
-What do political terms mean?
Hakeem Jefferson, "The Curious Case of Black Conservatives:
Construct Validity and the 7-point Liberal-Conservative Scale."

Why does this matter?

- You're AirBnB
- Do you have the same threshold for badges/'high quality' across countries?
- People travel across countries, how do you standardize their ratings?
- How do you communicate ratings to people from different cultures?
- You're doing a regression and trying to predict political leaning
- When someone says they are "for environmental protection," does that mean they support raising taxes on fuel?
- Do you do something different for Black people who say they're conservative versus white people who do so?
- You collect reports on problems in a city (311). What does it mean when someone reports an "unacceptable" pothole to fix?

What to do about it?

When collecting data, you can opt for free form text to give flexibility

- Doesn't constrain people to your pre-determined categories
- Potentially allows people to add more detail to capture the "construct"

This makes analyzing the data harder; doesn't fully solve the problem

- Most machine learning methods take in numeric or categorical data
- Even most modern NLP techniques convert words to numbers ("embeddings")
- Doesn't solve the problem of people using the same words to mean different things
=> this is a fundamental issue with quantitative data analysis

Ok, so what can you do?

You're going to have to make measurement choices at some point. Best make them consciously than by default.

- What is the data going to be used for? Do you need to create categories if there isn't a downstream prediction task?
- Categories chosen should relate to downstream tasks
"Hispanic/Latino" category:
- To know what languages to support, need to separate "Brazilian"
- To predict political lean, separate out "Cuban in Florida"
- Some measures are more consistent than others

Ask about more "objective" traits such as responsiveness or cleanliness

Parting thoughts about constructs

- Quantitative data science is all about creating general beliefs about discrete categories
Also known as "stereotyping," and data science inherits all its problems
- Be thoughtful about whether the measurement you have is appropriate for the construct you care about
- Many of the challenges we'll discuss in this class are just the measurement-construct dichotomy in disguise
[You really care about X , but the data you have can only tell you Y]

Questions?

Mean estimation from surveys

The task

Example:

"Do you like the class so far?"

- Each person j has an opinion, $Y_{j} \in\{0,1\}$
- We want to measure $\bar{y}=E\left[Y_{j}\right]$, the population mean opinion on some issue
- Each person also has covariates, x_{j}^{k}
- We also may care about conditional means $E\left[Y_{j} \mid\right.$ ORIE program $]$

Options: "yes" and "no"
\bar{y} : What fraction of people like the class so far?

Degree program, whether you like waking up at 9:30, etc

Fraction of people in ORIE who like the class

This problem is everywhere

- What fraction will vote for the Democrat in the next election
-What is the average rating of this product?
- Do people want the city to build a foot bridge to Manhattan?
- Are people happy with this new feature I just deployed?

Naïve method

- Get list of people (watched the movie; from phone book)
- Call them, suppose everyone answers and get Y_{j} from each
- We now have $\left\{Y_{j}\right\}_{j=1}^{N}$, if called N people

Random sample of people in this class

- Simply do, $\hat{y}=\frac{1}{N} \sum_{j} Y_{j}$
- By law of large numbers, if Y_{i} is independent and identically distributed according to the true population's opinion, then

$$
\begin{aligned}
\hat{y} \rightarrow & \bar{y} \text { as } \mathrm{N} \rightarrow \infty \\
& \bar{y}: \text { Actual opinion of the class }
\end{aligned}
$$

What goes wrong

People don’t give "true" opinion

Why?

- You're asking about something sensitive
- "social desirability" - people like making other people happy
- They're getting paid to answer the survey and just want to finish
- You know they other person is also going to rate you

Of course, then you're (likely) not going to succeed
People gave you \widetilde{Y}_{j}, instead of Y_{j}

$$
\widehat{y}=\frac{1}{N} \sum_{j} \widetilde{Y}_{j} \quad \text { You lie because you want a better grade }
$$

\hat{y} does not converge to \bar{y}, unless errors cancel out

Your sample does not represent your population

- You just posted a poll on Facebook or Twitter, anyone could respond
- You called only landlines, and no one under 50 owns one anymore
- You only asked people to rate a movie after they've seen it
- You can only rate an item if you bought it and didn't return it
- Those with certain opinions are more likely not to answer
- After bad experiences on online platforms
- "Shy Trump voters" (?)
=> People who answer the poll are different than your population - "differential non-response"

Your sample does not represent your population, in math

- For each person j, let $A_{j} \in\{0,1\}$ be whether they answered
- You have $Y=\left\{\left(A_{j}, Y_{j}\right)\right\}_{j=1}^{N}$, if called N people

$$
\text { Where } Y_{j}=\varnothing \text { if } A_{j}=0 \text { (they did not answer) }
$$

- Again, you do

$$
\hat{y}=\frac{1}{\left|\left\{j \mid A_{j}=1\right\}\right|} \sum_{j \in\left\{j \mid A_{j}=1\right\}} Y_{j}
$$

where $\left\{j \mid A_{j}=1\right\}$ denotes the set of people who answered and so $\left|\left\{j \mid A_{j}=1\right\}\right|$ is the number of people who answered
\hat{y} does not converge to \bar{y} unless Y_{j} and A_{j} are uncorrelated

Case study: Polling in US 2016 presidential election

Where the polls were wrong - and right
Trump's margin in state polls taken during campaign's las three weeks vs, his margin in the election results

Polls were off (a bit) in the 2016 e

EThe Nicw गlork Ẽimes
Presidential Forecast

Hillary Clinton has a 91% chance to win \rightarrow

- Underestimated

Poll error $\begin{gathered}\text { OVERESTIMATED } \\ \text { TRUMP MARGIN }\end{gathered}$

What happened?

- Professional pollsters spend a lot of time on getting opinions right
[We'll cover some of their techniques next time]
- But, polling is an increasingly challenging business

Basically no one answers a phone poll
Modeling opinions/turnout in diverse democracy is hard "social desirability" \rightarrow "shy Trump voters" (?)

- In 2016, turns out that less educated voters both:

Were less likely to answer polls
Were more likely to vote Trump

After brief plateau, telephone survey response rates have fallen again
Response rate by year (\%)

Differential non-response is everything

- Differential non-response shows up everywhere you're gathering opinions
- Your training data for whatever model you train faces the same issue!
- Standard "margin of error" calculations do not take this into account
- Differential non-response over time often explains "swings" in polls!

Parting thoughts

Be purposeful! Does your numeric data capture what you want it to?
Be skeptical! Just because a poll was "random" doesn't make it good

POLLS ARE
JUST NUMBERS.
YOU HAVE' TO TALK TO PEOPLE ON THE STREET.

POLLS SAY MOST
PEOPLE SUPPORT <CANDIDATE X).
BUT THE PEOPLE I TALK TO ON THE STREET SUPPORT <CANDIDATE Y >.

POLLS CLAIM MOST PEOPLE DON'T LIVE IN MY TOWN AND HAVE NEVER BEEN HERE. BUT THE PEOPLE I MEET ON THE STREET TELL A VERY DFFFRENT STORY.

ACCORDING TO POLLS, MOST PEOPLE DON'T LIKE PLAYING IN TRAFFIC. SO WHY DO I NEVER SEEM TO MEET THESE PEOPLE ON THE STREET?

Other pollsters complain about declining response rates, but our poll showed that 96% of respondents would be 'somewhat likely' or 'very likely' to agree to answer a series of questions for a survey.

Questions?

