# ORIE 5355: Applied Data Science - Decision-making beyond Prediction

Lecture 2: Common challenges in data collection

Nikhil Garg

#### Announcements

- Homework 1 posted
- Fill out when2meet for office hours
- My office hours today, after class, outside café

### Questions from last time?

#### Module overview

- What is data? Where does it come from? What does it represent?
- Common challenges in data collection
   Selection biases, censoring, and other challenges
- Polling/surveys as an extended example
  - What goes wrong in measuring opinions (mean estimation)
  - Some techniques that somewhat work
  - US 2016 election polls as a case study
- Other challenges and contexts: online ratings, privacy, etc.

### What is data?

A quick primer on measurement theory

#### What is a quantitative data point?

A measurement is "assignment of numbers to a variable in which we are interested."

- Construct/variable: what are we actually interested in?
- measurement/datum: numerical representation

These are not the same thing, especially with complexities of people!

## Examples of constructs and (often flawed) measurements

| Construct                                   | Measurement                                  |
|---------------------------------------------|----------------------------------------------|
| How well you understand the course material | A 1-100 grade, or a coarser letter grade     |
| Your opinion about a movie                  | 1-5 star rating, or a paragraph text review  |
| Your political views/ideal public policy    | Reduced to binary choice in voting           |
| Race + Ethnicity                            | "white," "Black," "Asian" "Hispanic" "Other" |
| Gender                                      | Often reduced to binary in surveys/forms     |

## People disagree on how measurements map to constructs

- Ratings in online marketplaces across countries
   In the US, anything but 5 stars means "terrible."
   In other countries, 3 or 4 stars is the norm
   Heterogeneity within a country/culture: some people rate everything a 5 and always tip, others never do
- What do political terms mean?
   Hakeem Jefferson, "The Curious Case of Black Conservatives: Construct Validity and the 7-point Liberal-Conservative Scale."

### Why does this matter?

- You're AirBnB
  - Do you have the same threshold for badges/`high quality' across countries?
  - People travel across countries, how do you standardize their ratings?
  - How do you communicate ratings to people from different cultures?
- You're doing a regression and trying to predict political leaning
  - When someone says they are "for environmental protection," does that mean they support raising taxes on fuel?
  - Do you do something different for Black people who say they're conservative versus white people who do so?
- You collect reports on problems in a city (311). What does it mean when someone reports an "unacceptable" pothole to fix?

#### What to do about it?

When *collecting* data, you can opt for free form text to give flexibility

- Doesn't constrain people to your pre-determined categories
- Potentially allows people to add more detail to capture the "construct"

This makes analyzing the data harder; doesn't fully solve the problem

- Most machine learning methods take in numeric or categorical data
- Even most modern NLP techniques convert words to numbers ("embeddings")
- Doesn't solve the problem of people using the same words to mean different things

=> this is a fundamental issue with quantitative data analysis

#### Ok, so what can you do?

You're going to have to make measurement choices at some point. Best make them consciously than by default.

- What is the data going to be used for? Do you need to create categories if there isn't a downstream prediction task?
- Categories chosen should relate to downstream tasks "Hispanic/Latino" category:
  - To know what languages to support, need to separate "Brazilian"
  - To predict political lean, separate out "Cuban in Florida"
- Some measures are more consistent than others

  Ask about more "objective" traits such as responsiveness or cleanliness

#### Parting thoughts about constructs

 Quantitative data science is all about creating general beliefs about discrete categories

Also known as "stereotyping," and data science inherits all its problems

- Be thoughtful about whether the measurement you have is appropriate for the construct you care about
- Many of the challenges we'll discuss in this class are just the measurement-construct dichotomy in disguise

[You really care about X, but the data you have can only tell you Y]

## Questions?

## Mean estimation from surveys

#### The task

- Each person j has an opinion,  $Y_j \in \{0, 1\}$
- We want to measure  $\bar{y} = E[Y_j]$ , the population mean opinion on some issue
- Each person also has covariates,  $x_j^k$
- We also may care about *conditional* means  $E[Y_j | ORIE program]$

#### **Example:**

"Do you like the class so far?"

Options: "yes" and "no"

 $\bar{y}$ : What fraction of people like the class so far?

Degree program, whether you like waking up at 9:30, etc

Fraction of people in ORIE who like the class

### This problem is everywhere

- What fraction will vote for the Democrat in the next election
- What is the average rating of this product?
- Do people want the city to build a foot bridge to Manhattan?
- Are people happy with this new feature I just deployed?

#### Naïve method

- Get list of people (watched the movie; from phone book)
- Call them, suppose everyone answers and get  $Y_i$  from each
- We now have  $\{Y_j\}_{j=1}^N$ , if called N people Random sample of people in this class
- Simply do,  $\hat{y} = \frac{1}{N} \sum_{j} Y_{j}$  Average opinion of the sample
- By law of large numbers, if  $Y_i$  is independent and identically distributed according to the true population's opinion, then

$$\hat{y} \rightarrow \bar{y} \text{ as N} \rightarrow \infty$$

 $\bar{y}$ : Actual opinion of the class

## What goes wrong

### People don't give "true" opinion

#### Why?

- You're asking about something sensitive
- "social desirability" people like making other people happy
- They're getting paid to answer the survey and just want to finish
- You know they other person is also going to rate you

Of course, then you're (likely) not going to succeed

People gave you  $\widetilde{Y}_{i}$ , instead of  $Y_{i}$ 

$$\hat{y} = \frac{1}{N} \sum_{j} \widetilde{Y}_{j}$$

You lie because you want a better grade

 $\hat{y}$  does not converge to  $\bar{y}$ , unless errors cancel out

## Your sample does not represent your population

- You just posted a poll on Facebook or Twitter, anyone could respond
- You called only landlines, and no one under 50 owns one anymore
- You only asked people to rate a movie after they've seen it
- You can only rate an item if you bought it and didn't return it
- Those with certain opinions are more likely not to answer
  - After bad experiences on online platforms
  - "Shy Trump voters" (?)
- => People who answer the poll are different than your population "differential non-response"

## Your sample does not represent your population, in math

- For each person j, let  $A_j \in \{0,1\}$  be whether they answered
- You have  $Y = \{(A_j, Y_j)\}_{j=1}^N$ , if called N people Where  $Y_j = \emptyset$  if  $A_j = 0$  (they did not answer)
- Again, you do

$$\hat{y} = \frac{1}{|\{j \mid A_i = 1\}|} \sum_{j \in \{j \mid A_j = 1\}} Y_j$$

where  $\{j \mid A_j = 1\}$  denotes the set of people who answered and so  $|\{j \mid A_j = 1\}|$  is the number of people who answered

 $\hat{y}$  does not converge to  $\bar{y}$  unless  $Y_j$  and  $A_j$  are uncorrelated Uncorrelated: Whether you answered is unrelated to what your true opinion is

# Case study: Polling in US 2016 presidential election

### Polls were off (a bit) in the 2016 e



#### Where the polls were wrong — and right

Trump's margin in state polls taken during campaign's last three weeks vs. his margin in the election results



### What happened?

- Professional pollsters spend a lot of time on getting opinions right
  - [We'll cover some of their techniques next time]
- But, polling is an increasingly challenging business
   Basically no one answers a phone poll
   Modeling opinions/turnout in diverse democracy is hard
   "social desirability" → "shy Trump voters" (?)
- In 2016, turns out that less educated voters both:
   Were less likely to answer polls
   Were more likely to vote Trump

#### After brief plateau, telephone survey response rates have fallen again

Response rate by year (%)



Note: Response rate is AAPOR RR3. Only landlines sampled 1997-2006. Rates are typical for surveys conducted in each year.

Source: Pew Research Center telephone surveys conducted 1997-2018.

#### DEW DESEARCH CENTER

### Differential non-response is everything

- Differential non-response shows up everywhere you're gathering opinions
- Your training data for whatever model you train faces the same issue!
- Standard "margin of error" calculations do not take this into account
- Differential non-response *over time* often explains "swings" in polls!



#### Parting thoughts

Be purposeful! Does your numeric data capture what you want it to?

Be skeptical! Just because a poll was "random" doesn't make it good









Other pollsters complain about declining response rates, but our poll showed that 96% of respondents would be 'somewhat likely' or 'very likely' to agree to answer a series of questions for a survey.

## Questions?